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Incompressible Cake Filtration of a Yield
Stress Fluid

George G. Chase™ and Patanee Dachavijit

Microscale Physiochemical Engineering Center, The University
of Akron, Akron, Ohio, USA

ABSTRACT

Filtration of Non-Newtonian fluid occurs frequently in industry. A
correlation is developed by introducing the Yield Stress model in place of
the Newtonian model used in the Ergun equation. The resulting model has
three parameters that are functions of the geometry and roughness of the
particle surfaces. Two of the parameters can be deduced in the limit as the
yield stress becomes negligible and the model reduces to the Ergun
equation for Newtonian fluids. The third model parameter is determined
from experimental data. The correlation relates a defined friction factor to
the dimensionless Reynolds and Hedstrom numbers that can be used to
predict pressure drop for flow of a yield stress fluid through a packed bed
of spherical particles.

This model is applied to predict incompressible cake filtration
performance of a yield stress fluid. Modeling results show that for a
constant pressure filtration the cake growth rate and filtrate flow rate for
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746 Chase and Dachavijit

the incompressible filter cake are similar to that for a Newtonian fluid,
until the flow rate decreases to the level that the shear stress is not
sufficient to maintain the flow. At this point the friction factor increases
more rapidly than that for the Newtonian fluid, and the flow rate and cake
growth rates decrease rapidly. For a given material and pressure drop the
transition between Newtonian-like flow and the yield stress flow can be
predicted as a function of cake height.

Key Words:  Bingham plastic; Yield stress; Porous media; Cake filtration.

INTRODUCTION

Filter cakes are widely used throughout industries for a variety of
purposes. Predicting pressure drop for a given flow rate is important for the
design of such processes. Most recent literature in cake filtration only
considers filtration of Newtonian fluids. There are several papers that describe
experiments and/or models involving non-Newtonian fluids. The works by
Shirato et al.' =*! consider cake filtration of Power Law fluids. Kozicki and
Kuang' and Kozicki and Slegr’™ evaluate the flows of viscoelastic fluids in
cake filtration. In a related area Nassehi'® models crossflow filtration by
solving the Navier—Stokes equations for the fluid flowing through the porous
tubes, and notes that the same approach can be applied to non-Newtonian
fluids in general. Abbasov et al.””! model particle capture in an axial magnetic
filter in which the fluid is represented by a power law model. Galeczki and
Galeczki'™ examine the limitations of modeling the flow of packed red blood
cells through porous beds and the effect of yield shear stress.

In this paper we consider the cake filtration of a yield stress fluid. The
fluid is assumed to contain rigid spherical particles of diameter d,, that are
filtered out of the fluid to form the cake. The composition of yield stress fluid
itself is not modeled in this work, only its observed rheological behavior. Such
fluids may actually consist of very fine particles suspended in slurry whose
observed net behavior is approximated by the yield stress model. In this latter
case the larger particles of diameter d, are captured in the cake while the
smaller particles flow through the cake and exit in the filtrate.

To model the cake behavior we need a model for a yield stress fluid
flowing through a porous material. A number of correlations are available in
literature for Newtonian fluids. Ergun'” combined the Blake—Kozeny
expression, derived as a model for Newtonian flows through a bundle of
capillary tubes, with an empirical Burk—Plummer relation, to obtain a packed
bed model applicable to a wide range of Reynolds numbers.
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Incompressible Cake Filtration 747
Christopher and Middleman''” introduce a modified Darcy model to
represent non-Newtonian flows through porous media in which a modified
permeability accounts for the non-Newtonian behavior. Park et al.!'!l
evaluated several approaches to modeling non-Newtonian flows through
packed beds and concluded that the capillary tube approach was the best
choice when combined with a particular rheological expression. Marshall
and Metzner!'?! discuss the effects of viscoelastic properties on flows
through packed beds and the importance of the Deborah number for such
fluids. Hayes et al."'* model the flow of power law fluids through packed
beds from a volume averaged approach and account for wall effects.

Pascal’*! analyzed theoretically the application of Darcy’s law for flow
through a porous medium to yield stress flow by introducing the effect of the yield
value in the “threshold gradient.” Al-Fariss and Pinder'"! applied the Herschel —
Bulkley model and derived an analogous Blake—Kozeny model for the yield
stress power law fluid flow through porous media at low Reynolds number. Al-
Fariss and Pinder defined a modified Reynolds number that combined the yield
stress with the viscous modulus for which the data collapses to a single curve.
They did not extend their results to high Reynolds numbers.

In this paper the bundle of capillary tubes approach is applied to model
the yield stress fluid through a porous medium similar to the approach by Al-
Fariss and Pinder,[15 ! however our model is derived in terms of the Hedstrém
number to account for the yield stress effect and the Reynolds number
commonly used with the Ergun equation. This model is combined with the
Burk—Plummer relation to obtain the analogous yield stress modified Ergun
equation that spans from low to high Reynolds numbers. The correlation
is fitted to experimental data to estimate one undetermined parameter, and
the resulting expression is applied to model a filter cake. Furthermore, a flow—
no flow condition is determined from the model, and the conditions for
the transition between yield stress and Newtonian type flows are determined.

A MODIFIED ERGUN’S EQUATION FOR YIELD
STRESS FLUIDS

Lets start with the Ergun equation for a Newtonian fluid flow and identify
where the yield stress model must be applied. The Ergun equation most often
reported in literature has the form''®

Py— Py 150uV (1 —8)* 1.75pV%(1 —¢)
. 2 ;7 + 3
dp € dp g’

ey



10: 23 25 January 2011

Downl oaded At:

Mﬁil MARCEL DEKKER, INC. ¢ 270 MADISON AVENUE « NEW YORK, NY 10016

™

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

748 Chase and Dachavijit

In deriving the Ergun equation a defined friction factor, f, proves useful.
The friction factor is defined by the rate expression''® for flow in a circular
tube

1
Fy = f(2wRL) <§ p<v>2> 2)

where F), is the drag force along the tube wall and (v) is the average velocity of
the fluid through the tube. A force balance on the fluid over the length of the
tube relates the drag force to the pressure drop along the length of the tube

Fy = mR*(Py — Py) 3)

Combining Egs. (2) and (3) to eliminate the drag force gives a working
expression for the friction factor
_R@®Po—Pr)

L p(y
For flow in the packed bed, we consider the bed to be a bundle of capillary

tubes of equal diameters and equal flow rates through each tube. The total flow
rate through all N capillary tubes is

f “

Q = N(7R; ;, Xv) ®)
Also, the total volumetric flow rate is related to the bed average velocity, V, by
Q = mR,,,V (6)

Eliminating the flow rates between Egs. (5) and (6) and applying the
definition of porosity gives

1
vy=-V (7)
€

where the porosity, €, equals the ratio of the total volume of the capillary tubes
divided by the volume of the bed.

Knowing that the bed actually consists of spherical particles of diameter
d,,, and not capillary tubes, we introduce the hydraulic radius. The radius of the
tubes modeled in Eq. (5) is related to the hydraulic radius by

Rupe = 2Ry, (8)

However, the hydraulic radius can also be related to the porosity and
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the particle diameter as

ed,

R =sa—o

©)

Finally, combining Eq. (4), and (7-9) we get the expression for the friction
factor for the packed bed in terms of the particle diameter as

e’d, (Po— Pr)

F=30=oL pv2

(10)

Equation (10) applies for all flow regimes, large or small Reynolds numbers.
The Reynolds number for flow in the capillary,

— p<V>2R Tube
m

R, (1)

is related to the packed bed by combining Eq. (11) with (7-9) to obtain

pvd, 4

R ="TF_— 12
w 60— ) (12
We define the Reynolds number for the packed bed as
Vd
o = _pVap (13)
w1 — &)
hence
2
R, = gRep (14)

For laminar flow we introduce the laminar flow friction factor correlation
for the flow in a capillary.

_16

fo=g%

15)

where f; is the friction factor value at low Reynolds number. Combining
Egs. (14) and (15) we get

_

z (16)

fo

ep

When we eliminate the friction factor and Reynolds numbers between
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Egs. (16), (13), and (10) we obtain

(Po— Pr) _ T2uV (1 — &)’
2 =z -3 a7
P

In laminar flow, the assumption of hydraulic radius frequently gives a
flow rate too large for a given pressure gradient. Hence, the number 72 is
expected to be too small. Analysis of experimental data led to improvement of
the formula by replacing the 72 in the denominator of Eq. (17) with 150, and
yields the Blake—Kozeny equation

(Po— Pr) _ 150uV (1 — &)*
L N d; g3

(18)

For large Reynolds numbers, a similar analysis with experimental data
produced what is known as the Burke—Plummer equation, in the form

Py — P 1,1
Bo—Pr)_ 7512l
P

L d & (19

Combining Eqgs. (19) and (10) yields the friction factor for large Reynolds
numbers to be

foo = 0.5833 (20)

Ergun™! found that by adding Eqs. (18) and (19) we obtain a correlation for the
full range of flows, as given in Eq. (1). This is equivalent to summing the two
asymptotic solutions to obtain the friction factor for the full range of Reynolds
numbers as

f=Ffo+fo 2y

MacDonald et al.'”! extended Ergun’s results to a wider range of
materials and found that the correlation is improved by replacing the 150 in
Eq. (1) with 180, and by replacing the 1.75 with 1.8 for smooth particles or by
4.0 for rough particles. In this work we only consider the smooth particles,
hence Eq. (1) is revised and the Ergun equation for Newtonian fluids becomes

Po— Py 180uV (1 —g)® 1.80pV2(1 — &)
= 2 7 T 3
L dp € d, €

(22)

For comparison with non-Newtonian fluids it is more convenient to
express the correlation in the form of Eq. (21). Taking into account the
refinement by MacDonald et al.,"'”! the functional forms for the Low and High
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Reynolds Number friction factors are

C
fo= R—‘ where C; = 60 (23)

ep

foo=C> where C, =0.6 (24)

Hence, one can model the pressure drop for a Newtonian fluid flowing through
a packed bed using the Ergun equation in the form of Eq. (22), or one can
calculate the friction factor through Egs. (21), (23), and (24), and then
calculate the pressure drop using the definition of the friction factor, in Eq.
(10). For Newtonian fluids, Eq. (22) is more direct. For the yield stress fluid it
turns out that the second method, calculating the friction factor first, is the
most convenient approach.

Following a similar approach for a yield stress fluid flow requires (1) a
laminar flow correlation for yield stress fluids in a tube, (2) asymptotic
assumptions that as the yield stress goes to zero (or when the Reynolds number
becomes very large), the solution collapses to the Newtonian fluid correlation,
and (3) an expression for when the fluid will not flow.

The yield stress model for flow in a tube has the form

d
T, = —pﬂ,f +7, for |, >1,
d
Y20 for |r.<7, (25)
dr

The low Reynolds number laminar flow solution for a yield stress fluid flowing
in a tube is''®

m(Py — PL)R* 4/7,\ 1/7t\*
R =00 T wbe | T (1o) 4 (10 2
. tube<v> 8/.LOL l 3 <TR> + 3 (TR) ( 6)

where 75 is the shear stress value at the tube wall.

Equation (26) contains the fluid yield stress parameter, 7,. The
dimensionless group that represents the yield stress is the Hedstrom number.
For flow of a yield stress fluid in a packed bed the Hedstrom and Reynolds
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numbers are defined as

2
Topd 82
Hop = 2p IRV @7
My (1 — &)
Vd
R, = _pYdy (28)
Ho(1 — &)

Combining Egs. (7-10), and (26-28), with some algebraic rearrange-
ment, we derive the low Reynolds number friction factor value to be

47 -1
24 4 (2H, 1(2H,
fo=——1-2 (22 ) 4o (22 (29)
Rep 3 \foR;, 3 \foR;,
The assumption of hydraulic radius is expected to make the numerical values

of 24 and 2 in Eq. (29) to be too small, as in the case with the Newtonian fluid.
Those constants are replaced with constants C; and Cj, to be determined.

47 -1
C 4 (CsH 1 (CsH
fO:_l 1 -2 3 2ep +- 3 zep (30)
Rep 3 fORep 3 fORep
Since the effect of the yield stress diminishes as Reynolds number becomes
very large (i.e. for large strain rates), the yield stress fluid behaves similar to a

Newtonian fluid at large Reynolds number. Hence, for large Reynolds
numbers, the friction factor becomes

fo=0C €1V}

Following Ergun’s approach, the friction factor for the full flow range takes
the form of Eq. (24) where the constants C, C5, C3 in Egs. (30) and (31) must
be determined.

In the limit as 7, — 0, Eq. (30) must reduce to the Newtonian fluid
correlation, Eq. (21). Hence by inspection we conclude C; = 60 and C, = 0.6
for smooth particles. For rough particles C, = 1.33 as determine by
MacDonald et al.''”! The constant, C3, must be determined empirically from
experiments with yield stress fluids (the topic of the next section).

The inequality condition in the yield stress model, Eq. (25), suggests that
if the applied pressure is not large enough, no flow will occur. For flow in a
tube this occurs when 7p/7zx < 1. This ratio appears on the right side of
Eq. (26) and by inspection with Eq. (29), the equivalent requirement for flow is

C3 H ep
/R,

<1 (32)
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In measurable quantities, flow occurs when the condition

(Po = P1) _ 3C37,(1 — ©)
L d, e

(33)

is satisfied.

EXPERIMENTAL DETERMINATION OF PARAMETER Cj;

A true yield stress fluid behavior is difficult to produce in a laboratory.
However, a number of fluid mixtures give an approximate yield stress
behavior. One such fluid, as reported by Wiinsch,!'®! is an aqueous solution of
Carbopol 941 (BF Goodrich Corporation). Solutions with concentrations
varying between 0.15 to 1.3 mass percent of Carbopol 941 by mass are used to
determine the parameter C;. All rheological measurements are for the
mixtures at room temperature. The rheological parameters for characterizing
the fluid are determined from shear stress—shear rate data measured by a
Dynamic Stress Rheometer by Rheometric Scientific, Inc.

In the packed bed experiments the aqueous solutions of known
concentrations of Carbopol 941 are pumped through a packed column of
glass beads in the experimental setup shown in the diagram in Fig. 1. The
pressure drop is measured over a range of flow rates for each concentration.
The packed column is a Plexiglas tube of 5.7 cm in inside diameter and 110 cm
in length. The spherical glass beads have a narrow size distribution with a
number-average diameter of 0.211cm, as determined by microscopic
measurement. The tube wall taps for pressure measurements are 87 cm apart
and two tube diameters from the ends of the packed bed to minimize entrance
and exit effects. The column, fluid reservoir, and flow meter are mounted
vertically and fitted with pipes and valves to allow upward flow for filling and
downward flow for testing. Air pressure is used to drive the flow.

The bed porosity is calculated from Ergun’s Equation, Eq. (1), with
pressure drop and flow rate data of distilled water flowing through the packed
column. The calculated porosity of 0.37 agrees with reported values of beds
with normal packed spherical particles.!"”!

The data in Fig. 2 are obtained by least-squares fitting of the stress—strain
rate data to obtain u, and 7, from the slope and intercept of the fitted linear
curves. The data in Fig. 2 in turn are fitted by least squares fit to obtain the
values of w, and 7, as functions of concentration. The values from these fitted
curves are used in the packed bed analysis below.
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VENT
AIR
PRESSURE N
J~ PACKED
PRESSURE COLUMN
VESSEL AND
FLUID
RESERVOIR
PRESSURE
GAUGE

®

FLOW
METER

Figure 1. Schematic of the packed column experiment. Air pressure drives the fluid
flow. For filling the column with fluid, the valves are positioned to drive the flow
upward to vent air out of the top. In the experiments the flow is driven downward
through the column and the flow meter while pressure drop and flow rate are monitored.

The value of C; is determined by minimizing the error between the
experimental and calculated pressure drop data in the packed bed experiments,
shown in Fig. 3. The results in Fig. 3 give a relatively good fit of the
experimental data over a range of pressures, flow rates, and material
parameters. The value of C3 = 3.50 is also remarkably close to the value of 2
predicted using the bundle of capillary tubes model, as shown in Eq. (29). This
result is tentative. More experimental data should be obtained for several
different materials to determine the optimal value for Cs.
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Figure 2. (a) Yield stress, 7,, versus concentration. (b) Viscosity parameter, p,,
versus concentration of carbopol in aqueous solution. The discrete data points are the
experimental u, and 7, values. The solid curves are the least squares fitted values as a
function of concentration and are used in the packed bed analysis. The regression
coefficient for the curve in (a) is R%2 = 0.975 and for (b) is R? = 0.954.

Using this value for C; the friction factor may now be calculated as a
function of velocity using Egs. (21), (27), (28), (30), and (31), where C| =
60.0, C, = 0.60, and C3; = 3.50. The pressure drop follows from the friction
factor and Eq. (10). However, Eq. (30) is difficult to use to predict the friction
factor and pressure drop because of its implicit dependence on f,. To plot the
results in a more convenient form, Eq. (30) is rearranged in order to eliminate
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300
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Figure 3. Pressure drop versus velocity data for flow of a yield stress fluid in a packed
bed. The discrete points are experimentally measured data points. The curves are
calculated values for C3 = 3.50 and the yield stress model parameters, 7, and u,
determined from the fitted values listed in Table 1. The concentrations are the mass
fractional amounts of Carbopol 941 in aqueous solution.

the friction factor in the denominator.

47025
C1 4 C3He,,

R—ep 3Re§

1 C3Hep
3 Rei

fo= fi— (34)

The Reynolds and Hedstrém numbers are calculated via Egs. (27) and
(28). A method of successive substitution is used to calculate f, from Eq. (34)
from an initial guess and for fixed values of R, and H,,. Since Eq. (34) is
fourth order in f,, the polynomial has four roots, of which two are negative and
two are positive. The negative values can be discarded because the friction
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factor cannot be negative. Of the two positive values, one is larger than
the corresponding value for Newtonian fluids and one is near zero. The correct
root is greater than the value for the Newtonian fluid./*!

The friction factor is plotted in Fig. 4 as a function of R, and H,,. This
correlation may be used to calculate the friction factor and the pressure
subsequently calculated via Eq. (10). With this plot the pressure drop is easily
calculated without the iterative calculations required by Eq. (34). The criteria
given in Eq. (33) determines when flow occurs.

This correlation does not take into account the particle size distribution or
shape, both of which are known to affect the accuracy of the Ergun equation to
predict Newtonian fluid flow through a packed bed. These topics are left for
future work. Furthermore, the value for parameter Cj is based on limited data
and requires further study.

Hep =

+
1.0E+13 TEG

NN
BENNN
BN
SRER\\N\N

1.0E-01 t
0.0001 0.01 1 100 10000 1000000

///,

Rep

Figure 4. Friction factor plot for yield stress fluid flow through a packed bed. The
friction factor is plotted from Egs. (32)—(34) and for values C; = 60.0, C, = 0.60, and
C;3 = 3.50. The curve for H,, = 0 is equivalent to the Ergun equation for a Newtonian
fluid.
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MODELING OF CAKE FILTRATION OF A YIELD
STRESS FLUID

Volume Averaging theory provides a set of continuum equations that
describe the conservation laws of mass, momentum, energy, and entropy in a
porous medium."?' =2 It is assumed here that the flows are isothermal and that
all of the effects of interest for cake filtration are contained in the momentum
and mass balances. Furthermore, it is assumed that there are only two phases
(designated ‘s’ for solid and ‘f” for fluid), there are no chemical reactions, and
no mass transfer between the phases. The mass and momentum balances are:

a—Phase Mass

e+ Ve =0 for a=s.f (35)

f—Phase Momentum

ad .

- @pTvh) + V(e plv/v) + &/ VPI + V7l —/plg+ F' =0 (36)
s—Phase Momentum

d
5 (&) +V(e'pv'y) + 8'VP/ + Vs’ —e'p'g — F' =0 37)

We make the additional assumptions that the intrinsic mass densities for
each phase, p” and p*, are constant, and the flow is one-dimensional in the z-
direction. From dimensional analysis the inertial forces and the fluid phase
wall shear stress are neglected compared to the pressure, drag, solid matrix
normal stress, and the gravity forces.*®! We also assume that the solid phase
matrix is incompressible. For cake filtration this latter assumption implies that
the solid phase has a zero velocity within the filter cake and that the porosity is
uniform and constant.

These assumptions significantly simplify the mass and momentum
balances. For the fluid phase the mass and momentum balances become

f—Phase Mass

2 ah=0 (38)
0z
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f—Phase Momentum

oP
e/ S+ FI=0 where P=Pl+plg (39
T

The solid phase balances are identically zero for this case. Additional relations
include

el et =1 (40)

V= afvf 41)

where V is the approach velocity. Furthermore, the fluid phase volume
fraction, & f, is the same as the cake porosity, &, and the fluid phase intrinsic
density, p”, is the same as p as used in the Ergun equation, which simplifies the
notation.

For mathematical closure of Egs. (38) and (39) we need a constitutive
relation for the drag force, F' Z . To deduce a plausible constitutive correlation

for a yield stress fluid, we rearrange Eq. (10) to obtain

P,— P, 3f(1 —g)pV?
L o s3dp

(42)

In the limit as L — small the pressure drop term on the left-hand side of Eq.
(42) reduces to the gradient in the pressure, while the right-hand side is not
affected. This gives

_0P _3f(1 = e)pV?

43
0z e3d, 43)

Comparison of Egs. (43) and (39) provides the desired relationship for the
drag force

3f(1 — e)pV?
Fd —
z €2d, 4

This relationship is independent of whether the fluid is Newtonian or Yield
Stress. The friction factor correlation accounts for the fluid type.

Deriving the relation for the drag force in Eq. (44) is straight forward for the
incompressible cake modeling that follows. However, it is more complicated if
compressive filter cakes are to be modeled.'””! For compressive filter cakes a
constitutive correlation relating the stress on the solid phase, 7°, to the porosity
is needed. The latter results in a change in porosity with position, which in turn
through Eq. (44) will make the drag force vary with position.
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Combining Egs. (44) and (39) and integrating from z = 0 to an arbitrary
position z gives the pressure profile

YU —epV?

P(z,H) =P,
(z,0) d,

(45)

which shows the pressure profile is linear at each instant in time. If we evaluate
Eq. (45) at z = L, we get back Eq. (42). We use these equations to model the
filter cake.

The material properties are listed in Table 1 for all of these simulations.
The slurry is assumed to be made up of 100 micron rigid spherical particles,
that upon filtration form the filter cake. The slurry fluid phase volume fraction
is used later to calculate the cake growth rate.

We consider a constant pressure filtration where the pressure drop is fixed
at 1000 kPa. Equations (42) or (45) require an infinite flow rate at the start
when the cake depth is zero. Hence, we assume that the filter medium imparts
a resistance to flow equivalent to a 1 mm thickness of the cake. The medium
and cake pressure drops are summed to give the constant pressure drop of
1000 kPa. In Fig. 5 are plots of the approach velocity versus cake depth for
different values of the Hedstrom number.

In the calculations for Fig. 5 the friction factor values used in Eq. (42) are
determined from the correlation in Fig. 4. For cakes less than 0.1 m in depth
and Hedstrom numbers less than about 100 the fluids behave as a Newtonian
fluid, with the Reynolds numbers large enough that the friction factor is read
from the lower part of the curve in Fig. 4. For larger Hedstrom numbers a
transition point occurs at which the friction factor is read from the upper
curves in Fig. 4. At this transition the velocity drops dramatically.

When we apply a mass jump balance at the top of the cake!*” we can derive

1 [HO4r
0

which can be numerically integrated to relate the cake height as a function of time.

Table 1. Material properties in filter cake model.

Fluid Density, p, kgm > 1000
Viscosity, w and p,, kgm ™ 's™! 0.001
Cake porosity (fluid phase volume fraction), & 0.4

Slurry fluid phase volume fraction, Sémy 0.95

Particle diameter, d,,, m 0.0001
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Figure 5. Comparison of velocities versus bed depth for the material properties listed
in Table 1 and constant pressure drop of 100 kPa over the cake and medium. When the
cake is small the velocities are large enough that the friction factor from Fig. 4
coincides with that for a Newtonian fluid. As the cake builds up, a point is reached at
which the Reynolds number is small enough (for the particular value of the Hedstrom
number) and the friction factor follows the upper curves in Fig. 4. As the cake size
increases further the velocity dramatically decreases. The cake depth at which this
occurs depends upon the Hedstrom number value.

In this expression G is cake volume to filtrate volume ratio and is given by!*®!

1—&l,.
G=_ slurry @7

f _
8slurry &

Using Eq. (47) we plot in Fig. 6 the calculated values for cake height
versus filtration time. In Fig. 6 the cake growth rate appears to accelerate with
time as the cake depth gets larger. However the time scale is plotted as the
logarithm of time, which compresses the time scale and gives this appearance.
The cake growth rate is actually decreasing in time as the cake depth increases.
All of the plots initially follow the curve obtained for a Newtonian fluid, until
the transition occurs and the velocity decreases. The rate of cake growth, as
indicated by the shape of the curves, drops significantly after the transition
occurs to low Reynolds number.
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Figure 6. Cake height as a function of time. Each cake height versus time starts out
following the same rate as would a Newtonian fluid. When the Reynolds number
decreases to the point that the friction factor deviates from that for a Newtonian fluid in
Fig. 4 then the flow rate decreases dramatically. This causes the rate of cake growth to
decrease, as shown by the curves marked for various Hedstrom number values.

The yield stress fluid has a criteria for flow, as given in Egs. (32) and (33).
This limit is plotted in Fig. 7 for the material properties assumed in the simple
case modeled here. The limiting cake height at which flow stops may not be
practical to reach for most applications because the flow will have reduced to
very small values prior to reaching that height. In most filtrations operators
may wish to stop the filtration at the transition point to avoid the unnecessarily
long filtration times that would occur. An approximate curve fitted relation for
this transition point is given by

Rep, = 0.0897H)" (48)

From Eq. (48) the velocity may be calculated from the Reynolds number and
from the velocity the cake height may be calculated using Eq. (42). This
transition line is also plotted in Fig. 7.

In Fig. 7 the flow—no flow line separates the plot, as determined by Eq.
(33), into a flow region and a no-flow region. The no-flow region occurs above
the flow—no flow line. The flow region is further divided into a yield stress
region and an Ergun equation region. The yield stress region coincides with
the friction factor determined from the upper curves in Fig. 4 and the Ergun
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Figure 7. Plot of cake depth vs. yield stress, for the material properties in Table 1,
and for a constant pressure of 1000kPa. Flow will not occur in the no-flow region
above the flow—no flow line. The flow region below this line is divided into a yield
stress region and an Ergun equation region. The transition line between the yield stress
region and the Ergun equation region is determined as the point at which the friction
factor starts to deviate from the zero Hedstrom number curve in Fig. 4.

equation region coincides with the friction factor corresponding to the values
as given by the Ergun equation for a Hedstrom number of zero. In the yield
stress region the flow rate decreases dramatically from flow rate coinciding
with the Ergun equation region, as is shown in Fig. 5.

CONCLUSIONS

In this work, a correlation for the friction factor for flow of a yield stress
fluid through a packed bed is derived. This correlation has three parameters,
two of which are determined from the Ergun equation for Newtonian fluids.
A tentative value for the third parameter is determined from limited
experimental data on aqueous solutions of Carbopol 941. The resulting
correlation can be used to estimate the pressure drop for flow of a yield stress
fluid through a packed bed. A criterion for determining when flow will or will
not occur is also deduced.

This correlation is used to model cake filtration of a yield stress fluid for a
particular constant pressure drop and particle size. The model results show the
dramatic effects the yield stress has on changing the flow rate and cake growth
rate from that for a Newtonian fluid.
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Inits present form the yield stress model is limited to packed beds and filter
cakes of spherical particles of monotonic size. Future work should consider
effects of size distributions and shapes of particles. Also, more extensive
experimental data should be used to refine the value of parameter C; in Eq. (32).

NOTATION
Cy, Gy, C5 Constants in correlations [—]
d, particle diameter [m]
Fy drag force acting of fluid flow acting on a tube wall [N]
F ? interphase drag force [N/m’]
f friction factor [—]
Jos foo friction factor values at low and high Reynolds numbers [—]
g gravity acceleration [m/s]
G cake volume to filtrate volume ratio [—]
H,, H,, Hedstrom number, Hedstrom number for packed bed or
filter cake [—]
L cake height [m]
p, P’ dynamic and fluid phase pressures [N/m?]
P,, Py pressure at inlet and outlet of cake [N/mz]
0 volumetric flow rate though the packed bed [m?/s]
R, Ripes radius, capillary radius, radius of filter cake or packed bed
Rpea [m]
R, Reynolds number [—]
R, Reynolds number for packed bed [—]
Ry, hydraulic radius [m]
t time [s]
) average velocity in capillary [m/s]
v{ v fluid and solid phase velocities in the z-direction [m/s]
Vv superficial velocity [m/s]
z spatial position in the cake [m]
I Newtonian fluid viscosity [kg/m/s]
Mo fluid phase yield stress modulus [N/m?]
T, fluid phase yield stress [N/m?]
Ty, rz component of the fluid phase shear stress [N/m?]
TR shear stress at the capillary tube wall [N/m?]
T° stress on the solid phase matrix [N/mz]
g e’ porosity or void volume fraction of the cake [—]
Eturry fluid phase volume fraction in the slurry approaching the

cake [—]
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e? _ solid phase volume fraction [—]
p, p’ fluid phase density [kg/m®]
p’ solid phase density [kg/m]
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