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Incompressible Cake Filtration of a Yield
Stress Fluid

George G. Chase* and Patanee Dachavijit

Microscale Physiochemical Engineering Center, The University

of Akron, Akron, Ohio, USA

ABSTRACT

Filtration of Non-Newtonian fluid occurs frequently in industry. A

correlation is developed by introducing the Yield Stress model in place of

the Newtonian model used in the Ergun equation. The resulting model has

three parameters that are functions of the geometry and roughness of the

particle surfaces. Two of the parameters can be deduced in the limit as the

yield stress becomes negligible and the model reduces to the Ergun

equation for Newtonian fluids. The third model parameter is determined

from experimental data. The correlation relates a defined friction factor to

the dimensionless Reynolds and Hedstrom numbers that can be used to

predict pressure drop for flow of a yield stress fluid through a packed bed

of spherical particles.

This model is applied to predict incompressible cake filtration

performance of a yield stress fluid. Modeling results show that for a

constant pressure filtration the cake growth rate and filtrate flow rate for
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the incompressible filter cake are similar to that for a Newtonian fluid,

until the flow rate decreases to the level that the shear stress is not

sufficient to maintain the flow. At this point the friction factor increases

more rapidly than that for the Newtonian fluid, and the flow rate and cake

growth rates decrease rapidly. For a given material and pressure drop the

transition between Newtonian-like flow and the yield stress flow can be

predicted as a function of cake height.

Key Words: Bingham plastic; Yield stress; Porous media; Cake filtration.

INTRODUCTION

Filter cakes are widely used throughout industries for a variety of

purposes. Predicting pressure drop for a given flow rate is important for the

design of such processes. Most recent literature in cake filtration only

considers filtration of Newtonian fluids. There are several papers that describe

experiments and/or models involving non-Newtonian fluids. The works by

Shirato et al.[1 – 3] consider cake filtration of Power Law fluids. Kozicki and

Kuang[4] and Kozicki and Slegr[5] evaluate the flows of viscoelastic fluids in

cake filtration. In a related area Nassehi[6] models crossflow filtration by

solving the Navier–Stokes equations for the fluid flowing through the porous

tubes, and notes that the same approach can be applied to non-Newtonian

fluids in general. Abbasov et al.[7] model particle capture in an axial magnetic

filter in which the fluid is represented by a power law model. Galeczki and

Galeczki[8] examine the limitations of modeling the flow of packed red blood

cells through porous beds and the effect of yield shear stress.

In this paper we consider the cake filtration of a yield stress fluid. The

fluid is assumed to contain rigid spherical particles of diameter dp that are

filtered out of the fluid to form the cake. The composition of yield stress fluid

itself is not modeled in this work, only its observed rheological behavior. Such

fluids may actually consist of very fine particles suspended in slurry whose

observed net behavior is approximated by the yield stress model. In this latter

case the larger particles of diameter dp are captured in the cake while the

smaller particles flow through the cake and exit in the filtrate.

To model the cake behavior we need a model for a yield stress fluid

flowing through a porous material. A number of correlations are available in

literature for Newtonian fluids. Ergun[9] combined the Blake–Kozeny

expression, derived as a model for Newtonian flows through a bundle of

capillary tubes, with an empirical Burk–Plummer relation, to obtain a packed

bed model applicable to a wide range of Reynolds numbers.
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Christopher and Middleman[10] introduce a modified Darcy model to

represent non-Newtonian flows through porous media in which a modified

permeability accounts for the non-Newtonian behavior. Park et al.[11]

evaluated several approaches to modeling non-Newtonian flows through

packed beds and concluded that the capillary tube approach was the best

choice when combined with a particular rheological expression. Marshall

and Metzner[12] discuss the effects of viscoelastic properties on flows

through packed beds and the importance of the Deborah number for such

fluids. Hayes et al.[13] model the flow of power law fluids through packed

beds from a volume averaged approach and account for wall effects.

Pascal[14] analyzed theoretically the application of Darcy’s law for flow

throughaporousmediumtoyieldstressflowbyintroducing theeffectof theyield

value in the “threshold gradient.” Al-Fariss and Pinder[15] applied the Herschel–

Bulkley model and derived an analogous Blake–Kozeny model for the yield

stress power law fluid flow through porous media at low Reynolds number. Al-

Fariss and Pinder defined a modified Reynolds number that combined the yield

stress with the viscous modulus for which the data collapses to a single curve.

They did not extend their results to high Reynolds numbers.

In this paper the bundle of capillary tubes approach is applied to model

the yield stress fluid through a porous medium similar to the approach by Al-

Fariss and Pinder,[15] however our model is derived in terms of the Hedström

number to account for the yield stress effect and the Reynolds number

commonly used with the Ergun equation. This model is combined with the

Burk–Plummer relation to obtain the analogous yield stress modified Ergun

equation that spans from low to high Reynolds numbers. The correlation

is fitted to experimental data to estimate one undetermined parameter, and

the resulting expression is applied to model a filter cake. Furthermore, a flow–

no flow condition is determined from the model, and the conditions for

the transition between yield stress and Newtonian type flows are determined.

A MODIFIED ERGUN’S EQUATION FOR YIELD

STRESS FLUIDS

Lets start with the Ergun equation for a Newtonian fluid flow and identify

where the yield stress model must be applied. The Ergun equation most often

reported in literature has the form[16]

P0 2 PL

L
¼

150mV

d2
p

ð1 2 1Þ2

13
þ

1:75rV 2

dp

ð1 2 1Þ

13
ð1Þ
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In deriving the Ergun equation a defined friction factor, f, proves useful.

The friction factor is defined by the rate expression[16] for flow in a circular

tube

Fk ¼ f ð2pRLÞ
1

2
rkvl2

� �
ð2Þ

where Fk is the drag force along the tube wall and kvl is the average velocity of

the fluid through the tube. A force balance on the fluid over the length of the

tube relates the drag force to the pressure drop along the length of the tube

Fk ¼ pR2ðP0 2 PLÞ ð3Þ

Combining Eqs. (2) and (3) to eliminate the drag force gives a working

expression for the friction factor

f ¼
R

L

ðP0 2 PLÞ

rkvl2
ð4Þ

For flow in the packed bed, we consider the bed to be a bundle of capillary

tubes of equal diameters and equal flow rates through each tube. The total flow

rate through all N capillary tubes is

Q ¼ NðpR2
tubeÞkvl ð5Þ

Also, the total volumetric flow rate is related to the bed average velocity, V, by

Q ¼ pR2
bedV ð6Þ

Eliminating the flow rates between Eqs. (5) and (6) and applying the

definition of porosity gives

kvl ¼
1

1
V ð7Þ

where the porosity, 1, equals the ratio of the total volume of the capillary tubes

divided by the volume of the bed.

Knowing that the bed actually consists of spherical particles of diameter

dp, and not capillary tubes, we introduce the hydraulic radius. The radius of the

tubes modeled in Eq. (5) is related to the hydraulic radius by

Rtube ¼ 2Rh ð8Þ

However, the hydraulic radius can also be related to the porosity and
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the particle diameter as

Rh ¼
1dp

6ð1 2 1Þ
ð9Þ

Finally, combining Eq. (4), and (7–9) we get the expression for the friction

factor for the packed bed in terms of the particle diameter as

f ¼
13dp

3ð1 2 1ÞL

ðP0 2 PLÞ

rV 2
ð10Þ

Equation (10) applies for all flow regimes, large or small Reynolds numbers.

The Reynolds number for flow in the capillary,

Re ¼
rkvl2RTube

m
ð11Þ

is related to the packed bed by combining Eq. (11) with (7–9) to obtain

Re ¼
rVdp

m

4

6ð1 2 1Þ
ð12Þ

We define the Reynolds number for the packed bed as

Rep ¼
rVdp

mð1 2 1Þ
ð13Þ

hence

Re ¼
2

3
Rep ð14Þ

For laminar flow we introduce the laminar flow friction factor correlation

for the flow in a capillary.

f 0 ¼
16

Re

ð15Þ

where f0 is the friction factor value at low Reynolds number. Combining

Eqs. (14) and (15) we get

f 0 ¼
24

Rep

ð16Þ

When we eliminate the friction factor and Reynolds numbers between
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Eqs. (16), (13), and (10) we obtain

ðP0 2 PLÞ

L
¼

72mV

d2
p

ð1 2 1Þ2

13
ð17Þ

In laminar flow, the assumption of hydraulic radius frequently gives a

flow rate too large for a given pressure gradient. Hence, the number 72 is

expected to be too small. Analysis of experimental data led to improvement of

the formula by replacing the 72 in the denominator of Eq. (17) with 150, and

yields the Blake–Kozeny equation

ðP0 2 PLÞ

L
¼

150mV

d2
p

ð1 2 1Þ2

13
ð18Þ

For large Reynolds numbers, a similar analysis with experimental data

produced what is known as the Burke–Plummer equation, in the form

ðP0 2 PLÞ

L
¼ 1:75

1

dp

rV 2 1 2 1

13
ð19Þ

Combining Eqs. (19) and (10) yields the friction factor for large Reynolds

numbers to be

f1 ¼ 0:5833 ð20Þ

Ergun[9] found that by adding Eqs. (18) and (19) we obtain a correlation for the

full range of flows, as given in Eq. (1). This is equivalent to summing the two

asymptotic solutions to obtain the friction factor for the full range of Reynolds

numbers as

f ¼ f 0 þ f1 ð21Þ

MacDonald et al.[17] extended Ergun’s results to a wider range of

materials and found that the correlation is improved by replacing the 150 in

Eq. (1) with 180, and by replacing the 1.75 with 1.8 for smooth particles or by

4.0 for rough particles. In this work we only consider the smooth particles,

hence Eq. (1) is revised and the Ergun equation for Newtonian fluids becomes

P0 2 PL

L
¼

180mV

d2
p

ð1 2 1Þ2

13
þ

1:80rV 2

dp

ð1 2 1Þ

13
ð22Þ

For comparison with non-Newtonian fluids it is more convenient to

express the correlation in the form of Eq. (21). Taking into account the

refinement by MacDonald et al.,[17] the functional forms for the Low and High
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Reynolds Number friction factors are

f 0 ¼
C1

Rep

where C1 ¼ 60 ð23Þ

f1 ¼ C2 where C2 ¼ 0:6 ð24Þ

Hence, one can model the pressure drop for a Newtonian fluid flowing through

a packed bed using the Ergun equation in the form of Eq. (22), or one can

calculate the friction factor through Eqs. (21), (23), and (24), and then

calculate the pressure drop using the definition of the friction factor, in Eq.

(10). For Newtonian fluids, Eq. (22) is more direct. For the yield stress fluid it

turns out that the second method, calculating the friction factor first, is the

most convenient approach.

Following a similar approach for a yield stress fluid flow requires (1) a

laminar flow correlation for yield stress fluids in a tube, (2) asymptotic

assumptions that as the yield stress goes to zero (or when the Reynolds number

becomes very large), the solution collapses to the Newtonian fluid correlation,

and (3) an expression for when the fluid will not flow.

The yield stress model for flow in a tube has the form

trz ¼ 2mo

dvz

dr
^ to for jtrzj . to

dvz

dr
¼ 0 for jtrzj , to ð25Þ

The low Reynolds number laminar flow solution for a yield stress fluid flowing

in a tube is[16]

pR4
tubekvl ¼

pðP0 2 PLÞR
4
tube

8moL
1 2

4

3

to

tR

� �
þ

1

3

to

tR

� �4
" #

ð26Þ

where tR is the shear stress value at the tube wall.

Equation (26) contains the fluid yield stress parameter, to. The

dimensionless group that represents the yield stress is the Hedstrom number.

For flow of a yield stress fluid in a packed bed the Hedstrom and Reynolds
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numbers are defined as

Hep ¼
tord2

p

m2
o

12

ð1 2 1Þ2
ð27Þ

Rep ¼
rVdp

moð1 2 1Þ
ð28Þ

Combining Eqs. (7–10), and (26–28), with some algebraic rearrange-

ment, we derive the low Reynolds number friction factor value to be

f 0 ¼
24

Rep

1 2
4

3

2Hep

f 0R2
ep

 !
þ

1

3

2Hep

f 0R2
ep

 !4
2
4

3
5
21

ð29Þ

The assumption of hydraulic radius is expected to make the numerical values

of 24 and 2 in Eq. (29) to be too small, as in the case with the Newtonian fluid.

Those constants are replaced with constants C1 and C3, to be determined.

f 0 ¼
C1

Rep

1 2
4

3

C3Hep

f 0R2
ep

 !
þ

1

3

C3Hep

f 0R2
ep

 !4
2
4

3
5
21

ð30Þ

Since the effect of the yield stress diminishes as Reynolds number becomes

very large (i.e. for large strain rates), the yield stress fluid behaves similar to a

Newtonian fluid at large Reynolds number. Hence, for large Reynolds

numbers, the friction factor becomes

f1 ¼ C2 ð31Þ

Following Ergun’s approach, the friction factor for the full flow range takes

the form of Eq. (24) where the constants C1, C2, C3 in Eqs. (30) and (31) must

be determined.

In the limit as to ! 0, Eq. (30) must reduce to the Newtonian fluid

correlation, Eq. (21). Hence by inspection we conclude C1 ¼ 60 and C2 ¼ 0:6
for smooth particles. For rough particles C2 ¼ 1:33 as determine by

MacDonald et al.[17] The constant, C3, must be determined empirically from

experiments with yield stress fluids (the topic of the next section).

The inequality condition in the yield stress model, Eq. (25), suggests that

if the applied pressure is not large enough, no flow will occur. For flow in a

tube this occurs when t0=tR , 1. This ratio appears on the right side of

Eq. (26) and by inspection with Eq. (29), the equivalent requirement for flow is

C3Hep

f R2
ep

, 1 ð32Þ
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In measurable quantities, flow occurs when the condition

ðP0 2 PLÞ

L
.

3C3to

dp

ð1 2 1Þ

1
ð33Þ

is satisfied.

EXPERIMENTAL DETERMINATION OF PARAMETER C3

A true yield stress fluid behavior is difficult to produce in a laboratory.

However, a number of fluid mixtures give an approximate yield stress

behavior. One such fluid, as reported by Wünsch,[18] is an aqueous solution of

Carbopol 941 (BF Goodrich Corporation). Solutions with concentrations

varying between 0.15 to 1.3 mass percent of Carbopol 941 by mass are used to

determine the parameter C3. All rheological measurements are for the

mixtures at room temperature. The rheological parameters for characterizing

the fluid are determined from shear stress—shear rate data measured by a

Dynamic Stress Rheometer by Rheometric Scientific, Inc.

In the packed bed experiments the aqueous solutions of known

concentrations of Carbopol 941 are pumped through a packed column of

glass beads in the experimental setup shown in the diagram in Fig. 1. The

pressure drop is measured over a range of flow rates for each concentration.

The packed column is a Plexiglas tube of 5.7 cm in inside diameter and 110 cm

in length. The spherical glass beads have a narrow size distribution with a

number-average diameter of 0.211 cm, as determined by microscopic

measurement. The tube wall taps for pressure measurements are 87 cm apart

and two tube diameters from the ends of the packed bed to minimize entrance

and exit effects. The column, fluid reservoir, and flow meter are mounted

vertically and fitted with pipes and valves to allow upward flow for filling and

downward flow for testing. Air pressure is used to drive the flow.

The bed porosity is calculated from Ergun’s Equation, Eq. (1), with

pressure drop and flow rate data of distilled water flowing through the packed

column. The calculated porosity of 0.37 agrees with reported values of beds

with normal packed spherical particles.[19]

The data in Fig. 2 are obtained by least-squares fitting of the stress–strain

rate data to obtain mo and to from the slope and intercept of the fitted linear

curves. The data in Fig. 2 in turn are fitted by least squares fit to obtain the

values of mo and to as functions of concentration. The values from these fitted

curves are used in the packed bed analysis below.
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The value of C3 is determined by minimizing the error between the

experimental and calculated pressure drop data in the packed bed experiments,

shown in Fig. 3. The results in Fig. 3 give a relatively good fit of the

experimental data over a range of pressures, flow rates, and material

parameters. The value of C3 ¼ 3:50 is also remarkably close to the value of 2

predicted using the bundle of capillary tubes model, as shown in Eq. (29). This

result is tentative. More experimental data should be obtained for several

different materials to determine the optimal value for C3.

Figure 1. Schematic of the packed column experiment. Air pressure drives the fluid

flow. For filling the column with fluid, the valves are positioned to drive the flow

upward to vent air out of the top. In the experiments the flow is driven downward

through the column and the flow meter while pressure drop and flow rate are monitored.
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Using this value for C3 the friction factor may now be calculated as a

function of velocity using Eqs. (21), (27), (28), (30), and (31), where C1 ¼

60:0; C2 ¼ 0:60; and C3 ¼ 3:50: The pressure drop follows from the friction

factor and Eq. (10). However, Eq. (30) is difficult to use to predict the friction

factor and pressure drop because of its implicit dependence on f0. To plot the

results in a more convenient form, Eq. (30) is rearranged in order to eliminate

Figure 2. (a) Yield stress, to, versus concentration. (b) Viscosity parameter, mo,

versus concentration of carbopol in aqueous solution. The discrete data points are the

experimental mo and to values. The solid curves are the least squares fitted values as a

function of concentration and are used in the packed bed analysis. The regression

coefficient for the curve in (a) is R2 ¼ 0:975 and for (b) is R2 ¼ 0:954:
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the friction factor in the denominator.

f 0 ¼
C1

Rep

þ
4

3

C3Hep

Re2
p

 !
f 3

0 2
1

3

C3Hep

Re2
p

 !4
2
4

3
5

0:25

ð34Þ

The Reynolds and Hedström numbers are calculated via Eqs. (27) and

(28). A method of successive substitution is used to calculate f0 from Eq. (34)

from an initial guess and for fixed values of Rep and Hep. Since Eq. (34) is

fourth order in f0, the polynomial has four roots, of which two are negative and

two are positive. The negative values can be discarded because the friction

Figure 3. Pressure drop versus velocity data for flow of a yield stress fluid in a packed

bed. The discrete points are experimentally measured data points. The curves are

calculated values for C3 ¼ 3:50 and the yield stress model parameters, t0 and m0,

determined from the fitted values listed in Table 1. The concentrations are the mass

fractional amounts of Carbopol 941 in aqueous solution.
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factor cannot be negative. Of the two positive values, one is larger than

the corresponding value for Newtonian fluids and one is near zero. The correct

root is greater than the value for the Newtonian fluid.[20]

The friction factor is plotted in Fig. 4 as a function of Rep and Hep. This

correlation may be used to calculate the friction factor and the pressure

subsequently calculated via Eq. (10). With this plot the pressure drop is easily

calculated without the iterative calculations required by Eq. (34). The criteria

given in Eq. (33) determines when flow occurs.

This correlation does not take into account the particle size distribution or

shape, both of which are known to affect the accuracy of the Ergun equation to

predict Newtonian fluid flow through a packed bed. These topics are left for

future work. Furthermore, the value for parameter C3 is based on limited data

and requires further study.

Figure 4. Friction factor plot for yield stress fluid flow through a packed bed. The

friction factor is plotted from Eqs. (32)–(34) and for values C1 ¼ 60:0; C2 ¼ 0:60; and

C3 ¼ 3:50: The curve for Hep ¼ 0 is equivalent to the Ergun equation for a Newtonian

fluid.
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MODELING OF CAKE FILTRATION OF A YIELD

STRESS FLUID

Volume Averaging theory provides a set of continuum equations that

describe the conservation laws of mass, momentum, energy, and entropy in a

porous medium.[21 – 25] It is assumed here that the flows are isothermal and that

all of the effects of interest for cake filtration are contained in the momentum

and mass balances. Furthermore, it is assumed that there are only two phases

(designated ‘s’ for solid and ‘f ’ for fluid), there are no chemical reactions, and

no mass transfer between the phases. The mass and momentum balances are:

a—Phase Mass

›

›t
ð1araÞ þ 7·ð1aravÞ ¼ 0 for a ¼ s; f ð35Þ

f —Phase Momentum

›

›t
ð1 f r f v f Þ þ 7·ð1 f r f v f v f Þ þ 1 f7P f þ 7·t f 2 1 f r f g þ Fd ¼ 0 ð36Þ

s—Phase Momentum

›

›t
ð1 sr svsÞ þ 7·ð1 sr svsvsÞ þ 1 s7P f þ 7·ts 2 1 sr sg 2 Fd ¼ 0 ð37Þ

We make the additional assumptions that the intrinsic mass densities for

each phase, r f and r s, are constant, and the flow is one-dimensional in the z-

direction. From dimensional analysis the inertial forces and the fluid phase

wall shear stress are neglected compared to the pressure, drag, solid matrix

normal stress, and the gravity forces.[26] We also assume that the solid phase

matrix is incompressible. For cake filtration this latter assumption implies that

the solid phase has a zero velocity within the filter cake and that the porosity is

uniform and constant.

These assumptions significantly simplify the mass and momentum

balances. For the fluid phase the mass and momentum balances become

f—Phase Mass

›

›z
ðvf

zÞ ¼ 0 ð38Þ
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f—Phase Momentum

1 f ›P

›z
þ Fd

z ¼ 0 where P ¼ P f þ r f gzz ð39Þ

The solid phase balances are identically zero for this case. Additional relations

include

1 f þ 1 s ¼ 1 ð40Þ

V ¼ 1 f v f
z ð41Þ

where V is the approach velocity. Furthermore, the fluid phase volume

fraction, 1 f, is the same as the cake porosity, 1, and the fluid phase intrinsic

density, r f, is the same as r as used in the Ergun equation, which simplifies the

notation.

For mathematical closure of Eqs. (38) and (39) we need a constitutive

relation for the drag force, Fd
z . To deduce a plausible constitutive correlation

for a yield stress fluid, we rearrange Eq. (10) to obtain

Po 2 PL

L
¼

3f ð1 2 1ÞrV 2

13dp

ð42Þ

In the limit as L ! small the pressure drop term on the left-hand side of Eq.

(42) reduces to the gradient in the pressure, while the right-hand side is not

affected. This gives

2
›P

›z
¼

3f ð1 2 1ÞrV 2

13dp

ð43Þ

Comparison of Eqs. (43) and (39) provides the desired relationship for the

drag force

Fd
z ¼

3f ð1 2 1ÞrV 2

12dp

ð44Þ

This relationship is independent of whether the fluid is Newtonian or Yield

Stress. The friction factor correlation accounts for the fluid type.

Deriving the relation for the drag force in Eq. (44) is straight forward for the

incompressible cake modeling that follows. However, it is more complicated if

compressive filter cakes are to be modeled.[27] For compressive filter cakes a

constitutive correlation relating the stress on the solid phase, ts, to the porosity

is needed. The latter results in a change in porosity with position, which in turn

through Eq. (44) will make the drag force vary with position.
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Combining Eqs. (44) and (39) and integrating from z ¼ 0 to an arbitrary

position z gives the pressure profile

Pðz; tÞ ¼ Po 2
3f ð1 2 1ÞrV 2

13dp

z ð45Þ

which shows the pressure profile is linear at each instant in time. If we evaluate

Eq. (45) at z ¼ L; we get back Eq. (42). We use these equations to model the

filter cake.

The material properties are listed in Table 1 for all of these simulations.

The slurry is assumed to be made up of 100 micron rigid spherical particles,

that upon filtration form the filter cake. The slurry fluid phase volume fraction

is used later to calculate the cake growth rate.

We consider a constant pressure filtration where the pressure drop is fixed

at 1000 kPa. Equations (42) or (45) require an infinite flow rate at the start

when the cake depth is zero. Hence, we assume that the filter medium imparts

a resistance to flow equivalent to a 1 mm thickness of the cake. The medium

and cake pressure drops are summed to give the constant pressure drop of

1000 kPa. In Fig. 5 are plots of the approach velocity versus cake depth for

different values of the Hedstrom number.

In the calculations for Fig. 5 the friction factor values used in Eq. (42) are

determined from the correlation in Fig. 4. For cakes less than 0.1 m in depth

and Hedstrom numbers less than about 100 the fluids behave as a Newtonian

fluid, with the Reynolds numbers large enough that the friction factor is read

from the lower part of the curve in Fig. 4. For larger Hedstrom numbers a

transition point occurs at which the friction factor is read from the upper

curves in Fig. 4. At this transition the velocity drops dramatically.

When we apply a mass jump balance at the top of the cake[25] we can derive

1

G

Z LðtÞ

0

dL

V
¼ t ð46Þ

which can be numerically integrated to relate the cake height as a function of time.

Table 1. Material properties in filter cake model.

Fluid Density, r, kg m23 1000

Viscosity, m and mo, kg m21 s21 0.001

Cake porosity (fluid phase volume fraction), 1 0.4

Slurry fluid phase volume fraction, 1
f

slurry 0.95

Particle diameter, dp, m 0.0001
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In this expression G is cake volume to filtrate volume ratio and is given by[28]

G ¼
1 2 1

f
slurry

1
f
slurry 2 1

ð47Þ

Using Eq. (47) we plot in Fig. 6 the calculated values for cake height

versus filtration time. In Fig. 6 the cake growth rate appears to accelerate with

time as the cake depth gets larger. However the time scale is plotted as the

logarithm of time, which compresses the time scale and gives this appearance.

The cake growth rate is actually decreasing in time as the cake depth increases.

All of the plots initially follow the curve obtained for a Newtonian fluid, until

the transition occurs and the velocity decreases. The rate of cake growth, as

indicated by the shape of the curves, drops significantly after the transition

occurs to low Reynolds number.

Figure 5. Comparison of velocities versus bed depth for the material properties listed

in Table 1 and constant pressure drop of 100 kPa over the cake and medium. When the

cake is small the velocities are large enough that the friction factor from Fig. 4

coincides with that for a Newtonian fluid. As the cake builds up, a point is reached at

which the Reynolds number is small enough (for the particular value of the Hedstrom

number) and the friction factor follows the upper curves in Fig. 4. As the cake size

increases further the velocity dramatically decreases. The cake depth at which this

occurs depends upon the Hedstrom number value.
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The yield stress fluid has a criteria for flow, as given in Eqs. (32) and (33).

This limit is plotted in Fig. 7 for the material properties assumed in the simple

case modeled here. The limiting cake height at which flow stops may not be

practical to reach for most applications because the flow will have reduced to

very small values prior to reaching that height. In most filtrations operators

may wish to stop the filtration at the transition point to avoid the unnecessarily

long filtration times that would occur. An approximate curve fitted relation for

this transition point is given by

Rep ¼ 0:0897H0:979
ep ð48Þ

From Eq. (48) the velocity may be calculated from the Reynolds number and

from the velocity the cake height may be calculated using Eq. (42). This

transition line is also plotted in Fig. 7.

In Fig. 7 the flow–no flow line separates the plot, as determined by Eq.

(33), into a flow region and a no-flow region. The no-flow region occurs above

the flow–no flow line. The flow region is further divided into a yield stress

region and an Ergun equation region. The yield stress region coincides with

the friction factor determined from the upper curves in Fig. 4 and the Ergun

Figure 6. Cake height as a function of time. Each cake height versus time starts out

following the same rate as would a Newtonian fluid. When the Reynolds number

decreases to the point that the friction factor deviates from that for a Newtonian fluid in

Fig. 4 then the flow rate decreases dramatically. This causes the rate of cake growth to

decrease, as shown by the curves marked for various Hedstrom number values.
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equation region coincides with the friction factor corresponding to the values

as given by the Ergun equation for a Hedstrom number of zero. In the yield

stress region the flow rate decreases dramatically from flow rate coinciding

with the Ergun equation region, as is shown in Fig. 5.

CONCLUSIONS

In this work, a correlation for the friction factor for flow of a yield stress

fluid through a packed bed is derived. This correlation has three parameters,

two of which are determined from the Ergun equation for Newtonian fluids.

A tentative value for the third parameter is determined from limited

experimental data on aqueous solutions of Carbopol 941. The resulting

correlation can be used to estimate the pressure drop for flow of a yield stress

fluid through a packed bed. A criterion for determining when flow will or will

not occur is also deduced.

This correlation is used to model cake filtration of a yield stress fluid for a

particular constant pressure drop and particle size. The model results show the

dramatic effects the yield stress has on changing the flow rate and cake growth

rate from that for a Newtonian fluid.

Figure 7. Plot of cake depth vs. yield stress, for the material properties in Table 1,

and for a constant pressure of 1000 kPa. Flow will not occur in the no-flow region

above the flow–no flow line. The flow region below this line is divided into a yield

stress region and an Ergun equation region. The transition line between the yield stress

region and the Ergun equation region is determined as the point at which the friction

factor starts to deviate from the zero Hedstrom number curve in Fig. 4.
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In its present form the yield stress model is limited to packed beds and filter

cakes of spherical particles of monotonic size. Future work should consider

effects of size distributions and shapes of particles. Also, more extensive

experimental data should be used to refine the value of parameter C3 in Eq. (32).

NOTATION

C1, C2, C3 Constants in correlations [—]

dp particle diameter [m]

Fk drag force acting of fluid flow acting on a tube wall [N]

Fd
z interphase drag force [N/m3]

f friction factor [—]

fo, f1 friction factor values at low and high Reynolds numbers [—]

g gravity acceleration [m/s2]

G cake volume to filtrate volume ratio [—]

He, Hep Hedstrom number, Hedstrom number for packed bed or

filter cake [—]

L cake height [m]

P, P f dynamic and fluid phase pressures [N/m2]

Po, PL pressure at inlet and outlet of cake [N/m2]

Q volumetric flow rate though the packed bed [m3/s]

R, Rtube,

Rbed

radius, capillary radius, radius of filter cake or packed bed

[m]

Re Reynolds number [—]

Rep Reynolds number for packed bed [—]

Rh hydraulic radius [m]

t time [s]

kvl average velocity in capillary [m/s]

v f
z ; vs

z fluid and solid phase velocities in the z-direction [m/s]

V superficial velocity [m/s]

z spatial position in the cake [m]

m Newtonian fluid viscosity [kg/m/s]

mo fluid phase yield stress modulus [N/m2]

to fluid phase yield stress [N/m2]

trz rz component of the fluid phase shear stress [N/m2]

tR shear stress at the capillary tube wall [N/m2]

t s stress on the solid phase matrix [N/m2]

1, 1 f porosity or void volume fraction of the cake [—]

1
f
slurry fluid phase volume fraction in the slurry approaching the

cake [—]
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1 s solid phase volume fraction [—]

r, r f fluid phase density [kg/m3]

r s solid phase density [kg/m3]
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